
Conditional Statements

In an earlier mini-lab, when you were drawing a diagonal line on a picture, you
probably noticed that the coordinates of the pixels on the diagonal had the same x-
and y- values. At the time we were drawing these lines, we were using nested for-
loops to give us the x- and y-coordinates of the pixels. When we got to this example,
we found that we only needed one loop – once we had the value of x, we also had the
value of y. We could have used the nested loops if we had a way to “pick out” the
correct values of x and y – that is, pick them out when they were equal.

Fortunately for us, there is a way to “pick out” values that we want. We will use an
if-statement in Python to allow us to make selections. If-statements are

conditional statements – if some given condition is true, we execute the block of
code that follows. The general syntax is:

 if some condition :

where some condition is replaced by an expression that has a true or false value.
This could be an expression such as x < 100, or redValue > 255, or x + y
> 200. The block of code that would follow this statement is whatever you want to

have happen when the condition is true.

We can use the logical operators <, <=, >, >=, ==, !=, and <> when constructing
expressions. We use the double equals to test for equality. (Remember, the single
equal symbol is used for assignment of values to variables.) We can use either != or
<> to test non-equivalence.

We can make more complicated expressions by using the keywords and and or to
combine expressions, such as in the expression:

x > 100 and x < 200.

Returning to our opening example, let’s use if-statements to help us draw a diagonal
line:

Draw a diagonal from upper-left to lower-right

def drawDiagonal(picture):

 newPict = duplicatePicture(picture)

 for y in range(getHeight(newPict)):

 for x in range(getWidth(newPict)):

 if x == y:

 px = getPixel(newPict, x, y)

 setColor(px, red)

 return newPict

If you test this example with pictures of various sizes, you will find that the pictures
also do not need to be square.

We can look at several other examples of using if-statements to make more
sophisticated color manipulations.

Example: TintRed

def tintRed(picture):

 newPict = duplicatePicture(picture)

 for px in getAllPixels(newPict):

 redValue = getRed(px)

 if redValue < 100:

 newRedValue = redValue * 2.5

 setRed(px, newRedValue)

 return newPict

Exercise: What does this function do to a picture?

Next, creating sepia-tones is a way to give a picture an old-fashioned look, with a
yellowish tint. The picture first gets converted to grayscale (because older prints
were usually in grayscale, and they are easier to work with), and then we look for
high and low ranges of color (luminance) and change them separately. The values
used in this example can be tweaked if you’d like to change the effect.

def sepiaTint(picture):

 newPict = grayscale(duplicatePicture(picture))

 for px in getAllPixels(newPict):

 redValue = getRed(px)

 blueValue = getBlue(px)

 # tint shadows

 if (redValue < 63):

 redValue = redValue * 1.1

 blueValue = blueValue * 0.9

 # tint midtones

 if (redValue > 62 and redValue < 192):

 redValue = redValue * 1.15

 blueValue = blueValue * 0.85

 # tint highlights

 if (redValue > 191):

 redValue = redValue * 1.08

 blueValue = blueValue * 0.93

 # set the new colors

 setRed(px, redValue)

 setBlue(px, blueValue)

 return newPict

 Original picture Sepia-tinted picture

Notice in this sepia-tint example that there are three sets of if-statements, one to
modify the red and blue values for each of the different ranges of red and blue.

There are times when we may want to do an alternative action if our condition is not
true. In those cases, we will use an if-else statement.

As an example, we might make a simple posterized effect. Printed posters often
have a limited number of colors that can be used, so we may want to posterize a
picture before having it printed. To do this, we look for specific ranges of colors, and
then set the color values in each range to one particular value.

Example: Simple Posterize

def simplePosterize(picture):

 newPict = duplicatePicture(picture)

 for px in getAllPixels(newPict):

 redValue = getRed(px)

 greenValue = getGreen(px)

 blueValue = getBlue(px)

 # check and set red values

 if (redValue > 128):

 setRed(px, 240)

 else:

 setRed(px,50)

 # check and set green values

 if (greenValue > 128):

 setGreen(px, 240)

 else:

 setGreen(px, 50)

 # check and set blue values

 if (blueValue > 128):

 setBlue(px, 240)

 else:

 setBlue(px, 50)

 return newPict

 Original picture Simple posterized picture

We can extend this posterize example by choosing to have more than two choices
for red, green, and blue. To do this, we will use if-else if-else statements, which are
abbreviated as elif statements in Python. We have a more general posterize
example:

Example: Posterize

def posterize(picture):

 newPict = duplicatePicture(picture)

 for px in getAllPixels(newPict):

 # get the RGB values

 redValue = getRed(px)

 blueValue = getBlue(px)

 greenValue = getGreen(px)

 # check and set red values

 if (redValue < 64):

 setRed(px, 31)

 elif (redValue > 63 and redValue < 128):

 setRed(px, 95)

 elif (redValue > 127 and redValue <192):

 setRed(px, 159)

 else:

 setRed(px, 223)

 # check and set green values

 if (greenValue < 64):

 setGreen(px, 31)

 elif (greenValue > 63 and greenValue < 128):

 setGreen(px, 95)

 elif (greenValue > 127 and greenValue <192):

 setGreen(px, 159)

 else:

 setGreen(px, 223)

 # check and set blue values

 if (blueValue < 64):

 setBlue(px, 31)

 elif (blueValue > 63 and blueValue < 128):

 setBlue(px, 95)

 elif (blueValue > 127 and blueValue <192):

 setBlue(px, 159)

 else:

 setBlue(px, 223)

 return newPict

How does this function work? Once we obtain the red, green, and blue values for a
pixel, we check the red values. We come to the first if-statement. If the given
condition (redValue < 64) is true, we set the red to a new value (31) and then
execution continues to the if-statement checking the green values. We skip the
remaining statements in that block of code dealing with red values. If the first
condition for red is not true, we would check the second condition (redValue > 63
and redValue < 128). If it is true, we change the red value to 95 and execution
skips to the first if-statement for green values. If it is not true, we check the third
condition. If it is true, we change the red value to 159. If it is not true, we execute
the statement(s) that come after the else.

Exercise: What is the minimum number of conditions we would need to check in
the posterize example? What is the maximum number of conditions we would
need to check?

Exercise: What is the difference between using all if-statements in the following
version of posterize and the version from earlier in the notes?

def posterize2(picture):

 newPict = duplicatePicture(picture)

 for px in getAllPixels(newPict):

 # get the RGB values

 redValue = getRed(px)

 blueValue = getBlue(px)

 greenValue = getGreen(px)

 # check and set red values

 if (redValue < 64):

 setRed(px, 31)

 if (redValue > 63 and redValue < 128):

 setRed(px, 95)

 if (redValue > 127 and redValue <192):

 setRed(px, 159)

 if (redValue > 191 and redValue < 256):

 setRed(px, 223)

 # check and set green values

 if (greenValue < 64):

 setGreen(px, 31)

 if (greenValue > 63 and greenValue < 128):

 setGreen(px, 95)

 if (greenValue > 127 and greenValue <192):

 setGreen(px, 159)

 if (greenValue > 191 and greenValue < 256):

 setGreen(px, 223)

 # check and set blue values

 if (blueValue < 64):

 setBlue(px, 31)

 if (blueValue > 63 and blueValue < 128):

 setBlue(px, 95)

 if (blueValue > 127 and blueValue <192):

 setBlue(px, 159)

 if (blueValue > 191 and blueValue < 256):

 setBlue(px, 223)

 return newPict

We have started to see that we can use if-statements to help us control how we
make our color changes. We can continue with this idea by replacing one color with
another color. Whenever the color of a pixel is “close enough” to the original color,
we replace it. In a sense, we are looking at the “distance” between colors of pixels.
We will use this to remove red-eye in a picture as well as to replace backgrounds.

Example: Remove red-eye

def removeRedEye(pic, startX, startY, endX, endY,

replacementColor):

 newPict = duplicatePicture(pic)

 for x in range(startX, endX):

 for y in range(startY, endY):

 px = getPixel(newPict, x, y)

 if (distance(red, getColor(px)) < 165):

 setColor(px, replacementColor)

 return newPict

In the following picture, I used the openPictureTool in jes4py to find the x- and y-
ranges for the eyes.

In main, the removeRedEye function was called as follows:

pict2 = removeRedEye(pict, 170, 180, 193, 196, makeColor(30,30,50))

pict3 = removeRedEye(pict2, 238, 184, 256, 198, makeColor(30,30,50))

 Original Picture Red-eye removed

After experimenting a little, a replacement color that is a deep shade of blue was
found to look fairly reasonable.

Aside: Distance Function

 The distance function used to compare colors is similar to that seen in
mathematics. Recall that you can find the distance between two points in space by
using the following formula:

d = (x2 - x1)
2 + (y2 - y1)

2 + (z2 - z1)
2

.
To compute the distance between the colors of two pixels, the following formula is
used:

d = (r2 - r1)
2 + (g2 - g1)

2 + (b2 -b1)
2

,
where (r1, g1, b1) and (r2, g2, b2) are the RGB values of the two pixels.

We can also use the distance function to aid in replacing backgrounds. Suppose we
have a picture of someone and a picture of where they stood without them. Could
we subtract the background of the person and then replace another background?
We would have to figure out where the colors of the two pictures are exactly the
same (i.e., the backgrounds should have the same colors in the regions where the
person is not standing.)

We can use the following function to attempt to do this:

Example: Swap backgrounds by subtraction

replace the background around a person with a new

background

def swapBack(bgWithPerson, bgWithoutPerson, newBg):

 newPict = duplicatePicture(bgWithPerson)

 for y in range(getHeight(newPict)):

 for x in range(getWidth(newPict)):

 px1 = getPixel(newPict, x, y)

 bgpx = getPixel(bgWithoutPerson, x, y)

 if (distance(getColor(px1), getColor(bgpx)) < 15.0):

 setColor(px1, getColor(getPixel(newBg, x, y)))

 return newPict

In this function, the parameter bgWithPerson is a picture with a person in front of
some background, the parameter bgWithoutPerson is a picture of just that

background, and the parameter newBg is some new background, like the Eiffel
Tower. When we compare the colors of corresponding pixels in the
bgWithPerson and the bgWithoutPerson pictures, the difference between
these colors should be very small, except where the person is. So we would check
where that distance is small, and then replace the color of those pixels with the color
from the pixels in the new background.

Television producers will sometimes use an effect called chromakey. This is very
common with weather forecasters. The idea is that the person will stand in front of

a solid color background (typically green or blue) and then the background will be
replaced with some other image, like a map or important building. In the following
example, we have two girls in front of a green screen, and then a picture of them on
campus. The green background then gets replaced with the campus picture.

 green-screen picture background picture

 Result of chromakey

The following function was used to produce this new image. Depending on the
actual shade of green in the green screen picture, the definition of green may need
to be altered.

replace the green background with a more interesting

background

def chromakey(pict, bg):

 newPict = duplicatePicture(pict)

 for y in range(getHeight(newPict)):

 for x in range(getWidth(newPict)):

 px = getPixel(newPict, x, y)

 # A definition of green

 if (getRed(px) + getBlue(px) < getGreen(px)):

 # then grab the color at the same spot from the bg

 setColor(px, getColor(getPixel(bg, x, y)))

 return newPict

Review:
If-statements have the following syntax:

if some condition:

 # do something here if the condition is true

If-else statements have the following syntax:

if some condition:

 # do something here if the condition is true
else:

 # do something else if the condition is not true

Elif statements have the following syntax:

if some condition:

 # do something here if the condition is true
elif some other condition:

 # do something else if the first condition is not true

 # and the second condition is true

elif yet another condition:

 # do if the first two conditions are not true but the

 # third condition is true

else:

 # do when none of the conditions are true

Note that there may be any number of elif conditions.

We will now experiment with using if-statements in the next minilab and lab.

Mini-Lab: Selectively Changing Colors

Lab: Combining Pictures

http://www.cs.kzoo.edu/cs107/Labs/IfML.shtml
http://www.cs.kzoo.edu/cs107/Labs/Lab4.shtml

